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Abstract. The idea that the phase of single-mode field may be correctly defined as a phase
difference between the state considered and a highly excited coherent state treated as the reference
phase state, although present in discussions about the quantum phase problem, have not been
directly concretized and its consequences fully understood. In the present work we succeed in
finding an effective mathematical procedure which corresponds exactly to this idea and so derive,
using the results related to phase difference available in the literature, the phase distribution for a
single-mode field. We discuss the obtained results.

The quest for a correct definition of the quantum phase variable, which began in the earliest days
of quantum mechanics [1], still remains without definite results, although important progress
has been made in recent years [2]. Most of the work in the field has been devoted to the
properties of putative phase operators for single-mode quantum fields, or, equivalently, for a
single harmonic oscillator. However, there are rigorous proofs that a bounded and self-adjoint
phase operator satisfying canonical commutation relations with a number operator, on a dense
domain which includes Hermite functions, does not exist [3, 4]. The absence of such a phase
operator is usually ascribed to the semiboundedness of the eigenvalue spectrum of the number
operator.

There are practical and physical reasons why one should treat the phase as a phase
difference between the state considered and some reference phase state. As the variable
canonically conjugated to the phase-difference operator is the number difference that is not
bounded from below, the above reason for the non-existence of a phase operator is avoided in
such an approach.

On this basis, in the paper of Luis and Sanchez-Soto [5] a new Hermitian operator which
represents the phase difference between two fields of the same frequencyω was introduced for
the first time and its essential properties discussed. Some further properties of this operator
have been cleared up in the discussion between Pegg and Vaccaro [6] and Luis and Sanchez-
Soto [7]. In the work of Yu [8] the peculiar properties of the spectrum of this operator were
noticed and analysed and the phase distribution corresponding to the phase difference of two
quantum states derived.

In this paper, using this distribution and fixing in it one state to be a coherent state and
allowing its intensity to tend to infinity, we derive the phase distribution of a single quantum
state. The main difficulty in this derivation was caused by the peculiar character of the spectrum
of the phase-difference operator, which is everywhere dense but not continuous. This is
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probably the reason why the phase distribution for a single-mode field, based on the phase-
difference operator, was not obtained earlier, although this possibility as an idea was present
ever since the introduction of the phase-difference operator.

In order to present our results we shall first recapitulate the results we need from [5, 8].
In [5] a polar decomposition of the complex amplitudes of the two oscillators is represented

as

a1a
†
2 = E12

√
N2(N1 + 1) (1)

whereak, a
†
k andNk (k = 1, 2), are annihilation, creation and number operators of the

two oscillators, respectively. The operatorE12 commutes with the total number operator
N = N1 +N2, and may be written in the following form [5, 8]:

E12 = E†
1E2 +

∞∑
n=0

|0, n〉〈n, 0|eiφ(n) (2)

where the operatorEk = (
√
Nk + 1)−1ak is the Susskind–Glogover exponential phase operator

of the kth oscillator and where|m, n〉 = |m〉1
⊗ |n〉2, 〈m, n| = 〈m|1

⊗〈n|2. The function
φ(n) is an arbitrary real function defined on non-negative integers. SinceE12 is unitary, a
Hermitian phase-difference operatorP12 can be defined by the relationE12 = exp(iP12) . The
eigenvaluesθm,n of the operatorP12 are given by the expression [5]

θm,n = φ0 +
2mπ

n + 1
(3)

wherem = 0, 1, . . . , n; n = 0, 1, 2, . . . andφ0 is a constant. The corresponding eigenstates

|θm,n〉 = 1√
n + 1

n∑
k=0

eikθm,n |n− k, k〉 (4)

form a complete orthonormal basis.
In the phase-space state basis (4), the phase-difference Hermitian operatorP12 is simply

given by

P12 =
∞∑
n=0

n∑
m=0

θm,n|θm,n〉〈θm,n|. (5)

If, for simplicity, we choose the constantφ0 to be zero, then the eigenvalues of the phase-
difference operator are all rational numbers between 0 and 1 times 2π , and only these numbers,
and each value is infinitely degenerated. For a rational numberq = m0/n0, where integers
m0 andn0 are prime to each other and 06 m0 6 n0, the eigenstates corresponding to phase
difference 2πq are

|q; s〉 = 1√
sn0

sn0−1∑
k=0

eiq2πk|sn0 − k − 1, k〉 (6)

wheres = 1, 2 . . . . When two harmonic oscillators are in a state|ψ〉 =∑∞n,m=0Cm,n|m, n〉,
with

∑∞
n,m=0 |Cm,n|2 = 1, it follows from (6) that the phase-difference distribution is given by

[8]

Pψ(2πq) =
∞∑
s=1

1

sn0

∣∣ sn0−1∑
k=0

C?sn0−1−k,ke
i2πqk

∣∣∣∣2. (7)

Now, to define the phase distribution of a single oscillator we shall proceed as follows.
We shall consider a state of two oscillators in which one oscillator is in the coherent state while
the other one is in an arbitrary state|ψ〉:

|ψ〉 =
∑
n

An|n〉;
∑
|An|2 = 1. (8)
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In this case the phase distribution (7) takes the following form:

P(2πq) =
∞∑
s=1

1

sn0

{ sn0−1∑
n,m=0

AnA
?
me−i2πq(n−m)〈sn0 − n− 1|α〉〈α|sn0 −m− 1〉

}
(9)

whereα = reiφ . For simplicity, hereafter we shall takeφ = 0.
The possibility of obtaining a phase distribution for a single oscillator from the phase-

difference distribution (9) is based on the fact that states of a single harmonic oscillator with
a well-defined phase exist. Such states are high-energy coherent states|α〉, |α| → ∞. Now
if we consider a state of two oscillators such that one oscillator is in the high-energy coherent
state and the other one in an arbitrary state|ψ〉, then the phase-difference distribution (9) can
be nothing else but the phase distribution of the state|ψ〉, since the high-energy coherent state
has a well-defined phase.

For sufficiently highr we can approximate〈sn0 − n− 1|α〉 in equation (9) by [9, 10]

〈sn0 − k − 1|α〉 ≈ (2πr2)−
1
4 exp

[
− (r

2 − sn0 + k + 1)2

4r2

]
. (10)

From this approximation we can conclude that a significant contribution to the summation
overs gives only those values ofs for whichsn0 is concentrated aroundr2 within an interval of
the orderr. Due to this, as 1/sn0 varies slowly compared with the corresponding exponential
factor we can fix it to 1/r2, and then approximate the sum by the corresponding integral which
can be calculated easily so that we obtain after integration:

P(2πq) = 1

n0r2

[∑
k,l

AkA
?
l e
−i2πq(k−l)

]
. (11)

This is the probability for a fixed rational numberq multiplied by 2π . For numbers
which do not belong to this class the probability is zero because they do not belong to the
spectrum of the phase-difference operator. As the spectrum of the phase-difference operator
is not continuous, in order to find the probability in a small interval1q aroundq we are not
allowed to integrate this expression. Instead of integration we have to add all probabilities
for all rational numbers which belong to this interval and contribute to this probability. In
our case we can take only those rational numbers from the considered interval for which the
denominatorn0 is no greater thanr2 because for greatern0 such would be alsosn0 so that due
to this, as we saw above, the probability would be negligibly small.

Now we can proceed as follows. Whenn0 is such that 1/n0 < 1q some rational numbers
of the formm/n0 will certainly belong to the considered interval1q for somem. Obviously,
there will be altogether1q/(1/n0) such numbers. The denominatorn0 for various rational
numbers which gives a relevant contribution to the probability distribution can approximately
taker2 different values. The interval1q may always be chosen so small that the function in
brackets may be treated as constant. Bearing all this in mind and taking the limitr →∞ we
obtain the expression for the probability we were looking for:

1q

[∑
k,l

AkA
?
l e

i2πq(k−l)
]
.

Evidently, from this formula, we can write for finite interval [a, b]∑
qε[a,b];qεQ

P (2πq) =
∫ b

a

[∑
AkA

?
l e

i2πx(k−l)
]

dx. (12)

It is obvious from the last equation that the expression [
∑
AkA

?
l e

i2πx(k−l)] may be
interpreted as the phase probability distribution.
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We have thus shown that the phase distribution of a single-oscillator state can be derived
from the phase-difference distribution. It is easily seen that this phase distribution is almost
identical with the phase distribution which is usually referred to as the canonical phase
distribution [11]. More precisely, for the probability in any fixed finite interval they both
give the same numerical result. But there is one subtle difference between the two phase
distributions. Namely, the canonical phase distribution is a continuous function of its argument
in a 2π interval, while the present distribution assumes non-zero values only for those values
of q which are rational numbers. This subtle difference may be of theoretical interest but, at
present, it does not seem to have practical importance.

Although the expression (12) for the single-oscillator phase distribution, appeared before,
e.g. in [11], the derivation presented there was based on general postulates and the connection
with specific experiments and models was not so clear. In the present work this distribution
is derived in a direct way which emphasizes the essential role of the infinite-energy (hence
classical) limit of a coherent state as a reference state of a well-defined phase, necessary
for promoting a phase-difference distribution of two oscillators into a phase distribution of a
single oscillator. It should be also noted that the phase-difference operator of Luis and Sanchez-
Soto [5], upon which our results essentially rely, is a realization in a modified form of Dirac’s
original idea to find the phase operator using a polar decomposition of creation and annihilation
operators. These facts should be considered as merits of the considered distribution.

In the absence of a unique pre-eminent phase operator and phase distribution it is, in our
opinion, important to elucidate various relations between those in use and to supply physical
and methodological grounds for them, whenever possible. Hopefully, this will enable us, if
not to find the unique correct one, then at least to establish some reasonable hierarchy between
them.

We believe that our recent papers [12, 13], and the present one contribute in a way to this
goal.

Recently, Luis and Sanchez-Soto [14, 15] have developed and discussed at length a
procedure giving the phase-difference probability-distribution function for a two-mode field
in terms of the single-mode field phase distribution. For the latter they used and discussed
distribution functions from various approaches.

When the single-mode phase distribution is taken to be the one obtained in Pegg–Barnet
formalism, their results may be reproduced almost trivially in the present approach, if one
takes into account the character of the spectrum of the phase-difference operator and applies
the above procedure for summation of probabilities over the spectrum.

Namely, the probability that one field has phaseθ and, simultaneously, that the other has
phaseθ + φ, is given by

P1(θ)P2(θ + φ) (13)

whereP1 andP2 are corresponding single-mode probabilities relative to the same reference
state, andθ and(θ + φ) belong to the spectra of corresponding phase-difference operators.
Obviously, this expression may be interpreted as the probability that the phase difference isφ

whenθ is fixed.
Now, taking one and the same coherent state as a reference state for both single-mode

fields, using our equation (11) we can write

P1(θ)P2(θ + φ) = 1

n0r2

[∑
k,l

AkA
?
l e
−2πq1(k−l)

]
1

n′0r2

[∑
m,n

A′mA
′?
n e−2πq2(m−n)

]
(14)

whereθ and (θ + φ) are represented as 2πq1 and 2πq2 respectively, and where the other
quantities corresponding to the second mode are denoted by primes. Applying to both factors
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in (14) the same procedure which led from equation (11) to (12), i.e. adding probabilities for all
rational numbers which belong to the small intervals1θ and1φ aroundθ andφ respectively,
we obtain for the probability distribution of phase differencef (φ)

f (φ) =
∫

dθ 〈θ + φ, θ |ρ|θ + φ, θ〉. (15)

Here|θ1, θ2〉 = |θ1〉
⊗ |θ2〉and|θ〉 is the standard Susskind–Glogover phase state. The last

expression is identical with expression (3.11) from [14], but here it is derived in a transparent
and straightforward way with an evident probabilistic interpretation and some difficulties
avoided.

It should be noted that the phase-difference distribution of the two states, obtained from
the phase-difference distribution of these states relative to the same coherent state, is not the
same as the phase difference distribution of these states calculated relative to each other. The
reason for this, as explained in [8], is the fact that the phase-difference operator cannot be
represented as the difference of corresponding phase operators because such Hermitian phase
operators do not exist. However, ‘the close resemblance of these expressions’ was found in
[14], where the expressions for these two distributions were discussed.
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